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Abstract 

Recent extensions of the Sraffian Supermultiplier model (SSM) [Serrano (1995) and 

Freitas and Serrano (2015)] and studies, including those by Summa et al. (2023) and 

Araujo et al. (2023) have explored the model’s ability to account for cyclical fluctuations 

showing that the SSM model also provides valuable insights into the cyclical dynamics 

of capacity utilization and the share of the investment in the output. On another front, 

Morlin and Pariboni (2023) drawing on the seminal contribution by Rowthorn (1977), 

have endogenized income distribution in the SSM through a conflict inflation channel 

whereby income distribution dynamics are influenced by labour market conditions. In the 

present paper, we merge these two lines of investigation by analyzing the conditions for 

the emergence of endogenous cycles in the extended SSM advanced by Morlin and 

Pariboni. As in the analysis carried out by Araujo et al., we have adopted the Hopf 

bifurcation theorem to check if the conditions for the emergence of cyclical behaviour are 

present in the Morlin and Pariboni model. Through a formal analysis of the dynamic 

stability of the model equilibrium path, we identify the necessary conditions for a Hopf 

bifurcation for each parameter. Our findings show that persistent endogenous cycles are 

consistent with the extended SSM and can help us to understand the dynamics of inflation, 

income distribution and growth. 

 

 

 



1. Introduction 

Cyclical patterns are a key stylized fact of advanced capitalist economies [see Goodwin 

(1950, 1951) and Kalecki (1954)]. The ability to generate self-sustained oscillations 

through non-linear differential equations, effectively replicating business cycles, has been 

explored under different perspectives within demand-led macroeconomic models. Yet, it 

remains an open area of inquiry. Recently, the debate on endogenous cycles has extended 

to the autonomous demand-led growth models, e.g. the Sraffian Supermultiplier model 

(SSM) (Serrano, 1995; Freitas and Serrano, 2015). Critics of the SSM have questioned its 

ability to generate persistent cycles, thus challenging its effectiveness in explaining 

economic growth and the overall dynamics of aggregate demand (Nikiforos et al., 2023). 

In light of these objections, Araujo et al. (2023), have expanded the SSM’s scope to 

account for cyclical fluctuations, demonstrating that the model can provide valuable 

insights into the cyclical dynamics of capacity utilization and the investment share in 

output. An alternative response was provided by Summa et al. (2023) who emphasized 

the cyclical dynamics of autonomous demand itself as the explanation of economic 

fluctuations. 

Notwithstanding recent contributions, the cyclical dynamics of employment and 

income distribution remain largely unexplored in the SSM literature, which represents a 

central theme in the demand-driven literature on economic fluctuations. We address this 

issue by analyzing the extended SSM proposed by Morlin and Pariboni (2024), which 

endogenizes the dynamics of income distribution through a conflict inflation mechanism. 

Building on the analysis of Araujo et al. (2023), we apply the Hopf bifurcation theorem 

to determine whether cyclical behaviour can emerge within the Morlin-Pariboni model. 

Through a formal analysis of the dynamic stability of the model’s equilibrium, we take 

an important step forward in demonstrating the conditions under which the model admits 

limit cycles, suggesting the potential for sustained oscillatory behaviour. To achieve this, 

we employ the stability criterion developed by Asada and Yoshida (2003), which 

provides a robust framework for analyzing the qualitative properties of four-dimensional 

dynamic economic models. This criterion allows us to explore the system’s local 

dynamics around the equilibrium point and to identify bifurcations by focusing on the 

relationships between the model’s parameters and the structure of the Jacobian matrix, 

particularly in the presence of complex eigenvalues. By applying this method, we find 

that the interaction between conflict inflation, unemployment, and autonomous demand 



can generate limit cycles, leading to endogenous and persisting fluctuations in key 

variables such as wage share and capacity utilization. 

We contribute to the literature on demand-driven business cycles by showing how 

persistent fluctuations can emerge in an autonomous demand-led growth model with 

endogenous distribution (as advanced by Morlin and Pariboni, 2024). We refine the 

dynamic properties of the SSM with endogenous distribution and conflict inflation. By 

applying the Asada and Yoshida criterion, we offer a deeper understanding of how 

conflict inflation can interact with growth dynamics to produce sustained cycles, thereby 

enriching the theoretical foundations of demand-led growth models. Our findings 

demonstrate that persistent endogenous cycles are consistent with the extended SSM 

without relying upon any ad hoc assumption of non-linearity. In this way, we offer 

insights into the interconnected dynamics of inflation, income distribution, and growth. 

The paper is structured as follows. Section 2 reviews the relevant literature. 

Section 3 revisits the dynamics of the model and conducts a stability analysis. Section 4 

introduces the Asada and Yoshida criterion for cyclical behaviour. Finally, Section 5 

concludes with a discussion of the implications and potential avenues for future research. 

 

2. Distribution, autonomous demand, and cycles 

The Sraffian Supermultiplier model (SSM) is a contribution to demand-led growth theory 

(Serrano, 1995; Freitas and Serrano, 2015) that highlights the role of autonomous 

components of aggregate demand that do not generate productive capacity as the drivers 

of economic growth. The SSM ensures an endogenous convergence of the degree of 

capacity utilization towards normal capacity without necessarily triggering Harrodian 

instability, which is prevented by a sufficiently slow adjustment of the investment rate to 

the use of installed capacity (Freitas and Serrano, 2015; see also Haluska et al., 2021). In 

the SSM steady state – i.e., the fully adjusted position  -, the growth rate of non-capacity 

generating autonomous expenditures determines the growth rate of aggregate demand, 

productive capacity, and output in the long run (Serrano, 1995).  

 The SSM does not rely on endogenous adjustments in income distribution nor 

does it require any functional relation between growth and distribution to achieve its fully 

adjusted position. Sraffian and neo-Kaleckian growth models typically treat income 



distribution as an exogenous variable, reflecting a conceptual separation between two 

logical domains: the determination of distributive variables and income shares, and the 

processes governing the level and growth of output. Treating income distribution as 

exogenous in these models therefore does not imply that it is unaffected by growth. 

Rather, this approach allows for a clearer analysis of how distribution and growth interact.  

The interplay between autonomous demand-led growth and income distribution 

was explored by different authors. Notably, Nah and Lavoie (2019) and Brochier (2020) 

combined the SSM with conflict inflation, by including a labour market effect on wage 

claims, and endogenous labour supply. However, their approach uses the rate of change 

in employment, thereby resulting in the distributive effects of employment fading in the 

long run. In contrast, Morlin and Pariboni (2024) and Serrano (2019) introduce the 

unemployment rate itself to determine workers’ claims in their conflict inflation model. 

This assumption is in line with the typical assumption in short-term models, as, for 

instance, in the foundational work of Rowthorn (1977). Moreover, such an assumption 

allows for a lasting impact of unemployment on distribution, thus opening the door to an 

investigation of the political economy of autonomous demand (Morlin et al., 2024). 

Besides the persistent effects of labour market conditions on income distribution, 

Morlin and Pariboni’s (2024) model also provides a fruitful framework for exploring 

cyclical dynamics of growth and distribution—an aspect the authors themselves did not 

fully investigate.  In the following sections, we will revisit the dynamic stability analysis 

of the SSM, extended to include income distribution. Our focus will be on identifying the 

conditions under which cyclical dynamics may emerge in this enhanced framework. 

 

3. The stability analysis revisited 

Morlin and Pariboni’s (2024) model incorporates conflict inflation into an SSM, 

where income distribution and inflation are endogenous and influenced by the bargaining 

power of workers, which is mediated by the unemployment rate. In this section, we 

resume their analysis by adopting the traditional method of linearizing the system around 

the equilibrium point and calculating the eigenvalues of the Jacobian matrix. But here, 

instead of directly relying on the more widely used Routh-Hurwitz criteria, which 

provides conditions for stability in terms of the characteristic polynomial’s coefficients, 



you have chosen to follow the stability criterion put forward by Asada and Yashida 

(2003).  

The Asada and Yashida (2003) approach prepares the terrain for the use of the 

Hopf bifurcation theorem, which requires that the system have a pair of purely imaginary 

eigenvalues and no other eigenvalue with zero real parts. Additionally, this method allows 

for a more nuanced understanding of how oscillatory behaviour arises in a higher-

dimensional system, which is more complex to handle using the standard Routh-Hurwitz 

criteria. By following Asada and Yashida (2003), we can more easily approach the 

system’s dynamics to demonstrate how it can enter a regime of oscillations. Morlin and 

Pariboni (2023) model the evolution of four key variables: the investment share (ℎ), 

capacity utilization (𝜇), the unemployment rate (𝑢), and the wage share (𝜔) according to 

the following system of differential equations: 

ℎ′ = 𝛾(𝜇 − 𝜇𝑛) = 𝑓1(ℎ, 𝜇, 𝑢, 𝜔)                                                (1) 

𝜇′ = 𝜇 [𝑔𝑍 + 𝜎𝜙𝜔′ + 𝜎𝛾ℎ(𝜇 − 𝜇𝑛) − (
ℎ𝜇

𝑣
) + 𝛿] = 𝑓2(ℎ, 𝜇, 𝑢, 𝜔)               (2)     

𝑢′ = (1 − 𝑢)[𝛽0 − 𝛽1𝑢 − 𝑔𝑍 − 𝜎𝜙𝜔′ − 𝜎𝛾ℎ(𝜇 − 𝜇𝑛)] = 𝑓3(ℎ, 𝜇, 𝑢, 𝜔)         (3) 

𝜔′ =
𝜔{(1−𝛼1)𝜆2𝜔𝑘+𝛼2(1−𝜆1)(𝛳0−𝛳1𝑢)−[(1−𝛼1)𝜆2+𝛼2(1−𝜆1)]𝜔}

1−𝛼1𝜆1
= 𝑓4(ℎ, 𝜇, 𝑢, 𝜔)         (4) 

The first equation describes how the investment share evolves based on the 

difference between the actual capacity utilization (𝜇) and its normal level (𝜇𝑛), with 𝛾 

representing the sensitivity of investment to deviations in capacity utilization. The second 

equation captures the dynamics of capacity utilization, influenced by the growth rate of 

autonomous demand (𝑔𝑍), the wage share’s rate of change (𝜔′), and the interaction 

between investment share and capacity utilization, among other factors. The third 

equation explains the change in the unemployment rate (𝑢), which is affected by factors 

such as the unemployment rate and parameters such as 𝛽0 and 𝛽1 and adjustments driven 

by changes in wage share and capacity utilization. Finally, the fourth equation governs 

the evolution of the wage share, which depends on the relative power of workers and 

firms in wage bargaining, as represented by parameters such as 𝛼1, 𝜆1 and 𝜆2. The 

relevant equilibrium  𝑃∗(ℎ∗, 𝜇∗, 𝑢∗, 𝜔∗) is given by: 

ℎ∗ =
𝑣(1+𝛿)

𝜇𝑛
𝑔𝑍                                                            (5) 

𝜇∗ = 𝜇𝑛                                                                   (6)  



𝑢∗ =
𝛽0−𝑔𝑍

𝛽1
                                                                    (7) 

𝜔∗ =
(1−𝛼1)𝜆2𝜔𝑘+𝛼2(1−𝜆1)[𝛩0−

𝛩1𝛽0+𝑔𝑍𝛩1
𝛽1

] 

(1 − 𝛼1)𝜆2 + 𝛼2 (1−𝜆1)
                                        (8) 

We can rewrite equation (8) as: 

𝜔∗ =
𝛽1Φ1+Φ2(𝑔𝑍−𝛽0)

𝛽1Φ3
                                                          (8)’  

where: 

Φ1 = (1 − 𝛼1)𝜆2𝜔𝑘 + 𝛼2(1 − 𝜆1)𝛩0                                    (9) 

Φ2 = 𝛼2 (1 − 𝜆1)𝛩1                                                (10) 

 Φ3 = (1 − 𝛼1)𝜆2 + (1 − 𝜆1)𝛼2                                       (11) 

The linearization of the system around the equilibrium is assessed in terms of the 

Jacobian matrix, and its eigenvalues are calculated to ascertain the stability of the 

equilibrium. One possible approach to determine the asymptotic stability of the system is 

to analyze the characteristic equation of the Jacobian matrix, which can be expressed as 

follows: 

𝛥(𝜆, 𝐽(𝑃∗)) = 𝜆4  + 𝑆1𝜆
3 + 𝑆2𝜆

2 + 𝑆3𝜆 + 𝑆4 = 0                            (12) 

where 𝑆1, 𝑆2, 𝑆3 and 𝑆4 stand for the sums of minors of order one (trace), two, three and 

four (determinant) of the Jacobian matrix, respectively shown in the appendix. The 

Routh-Hurwitz criteria, necessary and sufficient conditions for all the roots of the 

characteristic polynomial to have negative real parts are 𝑅1: 𝑆1 > 0, 𝑆2 > 0, 𝑆3 > 0, 𝑆4 >

0,  and 𝑅2: 𝜙(𝑃∗) = 𝑆1𝑆2𝑆3 − 𝑆3
2 − 𝑆1

2𝑆4 > 0. If the above conditions are satisfied then 

the non-zero equilibrium 𝑃∗ will be locally and asymptotically stable. As the expressions 

for 𝑆1, 𝑆2, 𝑆3 and 𝑆4 involve cumbersome terms, we focus on an alternative route which 

consists of finding the roots of this characteristic equation (the eigenvalues) using Python. 

The four eigenvalues are given by: 

𝜆1,2 = 
𝑔𝑍𝛾𝜎−𝜈

2𝑔𝑍
±

√𝜈2[1−4(1+𝛿)𝑔𝑍
2𝛾𝜇𝑛

2 ]+𝑔𝑍𝛾𝜎(𝑔𝑍𝛾𝜎−2𝜈)

2𝑔𝑍
                                      (17) 

𝜆3,4 = ± √−
𝛩₁𝛼₂𝜑𝜎(𝜆₁−1)(𝛼₁𝜆₁−1)

(𝛼₁𝜆₂−1)(𝛽₀ + 𝑔𝑍−1)
                                                               (18) 



Some authors such as Araujo and Moreira (2023) and Nikiforos et al. (2023, p. 4) 

referring to the baseline system consider that eigenvalues are very likely to be complex, 

meaning that the baseline model has an equilibrium with convergent dumped cyclical 

trajectories. Indeed, in a 4-dimensional system, a possible way to ensure the asymptotic 

stability of the equilibrium with dumped oscillations is that the eigenvalues are complex 

with negative real parts. When the system has complex conjugate eigenvalues with 

negative real parts, the behaviour near the equilibrium point is oscillatory but the 

amplitude of the oscillations decays over time. Without complex eigenvalues, the system 

would not exhibit oscillatory behaviour, and if the real parts were positive, the system 

would become unstable. 

Proposition 1: 

If the following conditions are satisfied 𝑔𝑍𝛾𝜎 < 𝜈, (1 + 𝛿)( 4𝑔𝑍
2𝛾𝜇𝑛

2) > 1 and  𝜆₁ <

1,𝛼₁𝜆₁ < 1, 𝛼₁𝜆₂ < 1  and 𝑔𝑍 + 𝛽₀ < 1, then the equilibrium 𝑃∗(ℎ∗, 𝜇∗, 𝑢∗, 𝜔∗) is 

asymptotic stable. 

Proof.  

To ensure asymptotic stability we have to guarantee that all these eigenvalues are complex 

and that the real part of 𝜆1,2 must be negative.The  condition for the real part of 𝜆1,2 to be 

negative is that 𝑔𝑍𝛾𝜎 < 𝜈. Imposing this condition naturally implies that 𝑔𝑍𝛾𝜎 < 2𝜈 and 

an additional sufficient condition for guaranteeing the negativity of the term within the 

root is (1 + 𝛿)( 4𝑔𝑍
2𝛾𝜇𝑛

2) > 1. A possible combination of parameters that guarantee that 

𝜆3,4  are complex roots are:  𝜆₁ < 1,  𝛼₁𝜆₁ < 1, 𝛼₁𝜆₂ < 1  and 𝑔𝑍 + 𝛽₀ < 1. In this case, 

the equilibrium point is indeed a stable spiral. This means that trajectories near the 

equilibrium will spiral towards the equilibrium as time progresses. The system shows 

both oscillatory behaviour (due to the imaginary part of the eigenvalues) and convergence 

to the equilibrium (due to the negative real part of the eigenvalues). c.q.d. 

An important relationship between the coefficients of the characteristic 

polynomial and the eigenvalues can be grasped from the following proposition, which is 

based on theorem 2 by Asada and Yashida (2003, p.527). 

Proposition 2 



If the polynomial equation has a pair of purely imaginary roots with negative real parts 

and real parts of the other two roots (𝜆1,2) are not zero then 𝜙 = 𝑆1𝑆2𝑆3 − 𝑆3
2 − 𝑆1

2𝑆4 =

0. 

Proof. We know that:  

𝑆1 = −𝜆1 − 𝜆2 − 𝜆3 − 𝜆4                                             (P1) 

𝑆2 = 𝜆1𝜆2 + 𝜆1𝜆3 + 𝜆1𝜆4 + 𝜆2𝜆3 + 𝜆2𝜆4 + 𝜆3𝜆4                            (P2)  

𝑆3 = −𝜆1𝜆2𝜆3 − 𝜆1𝜆2𝜆4 − 𝜆1𝜆3𝜆4 − 𝜆2𝜆3𝜆4                             (P3) 

𝑆4 = 𝜆1𝜆2𝜆3𝜆4                                                        (P4) 

Assume that the characteristic equation (12) has a pair of purely imaginary roots, namely 

𝜆3,4 = ±𝛽𝑖, where 𝛽 > 0, and real parts of the other two roots (𝜆1,2) are not zero. 

Substituting 𝜆3,4 = ±𝛽𝑖 into (P1), (P2), (P3) and (P4) it yields: 

𝑆1 = −(𝜆1 + 𝜆2)                                                      (P5) 

𝑆2 = 𝛽2 + 𝜆1𝜆2                                                    (P6) 

𝑆3 = −(𝜆1 + 𝜆2)𝛽
2 = 𝑆1𝛽

2                                             (P7)  

𝑆4 = 𝛽2𝜆1𝜆2                                                           (P8) 

By inserting 𝑆1, 𝑆2, 𝑆3 and 𝑆4 into 𝜙 = 𝑆1𝑆2𝑆3 − 𝑆3
2 − 𝑆1

2𝑆4, one obtains after 

some algebraic manipulation that 𝜙 = 𝑆1
2𝛽2(𝛽2 + 𝜆1𝜆2) − 𝑆1

2𝛽2 𝜆1𝜆2 − 𝑆1
2𝛽4 = 0          

c.q.d. 

 We can also prove the following lemma, which will be useful in using the Hopf 

bifurcation theorem.  

Lemma: If the polynomial equation has a pair of purely imaginary roots with negative 

real parts and real parts of the other two roots (𝜆1,2) are negative then 𝑆1 > 0, 𝑆3 > 0 and 

𝑆4 > 0 

Proof. Assume that the characteristic equation (12) has a pair of purely imaginary 

roots, namely 𝜆3,4 = ±𝛽𝑖, where 𝛽 > 0, and real parts of the other two roots (𝜆1,2) are 

negative. From (P5), the imaginary parts of 𝜆1,2 cancel out and as the real part is negative. 



Hence 𝑆1 > 0. From (P7), 𝑆3 = 𝑆1𝛽
2 > 0, and from (P8), 𝑆4 = 𝛽2𝜆1𝜆2 = 𝛽2(𝛼′2 +

𝛽′2) > 0, where 𝛼′ and 𝛽′ are the real and the imaginary part of 𝜆1 and 𝜆2.        c.q.d. 

To show that the Hopf-Andronov-Poincaré bifurcation may be performed on the 

system of equations (1) – (4) with bifurcation parameter 𝑔𝑍, we shall make use of the 

following version of the Hopf bifurcation theorem by Asada and Yashida (2003, p. 526).  

Theorem 1: Suppose that the dynamical system has the following properties (𝐻1) −

(𝐻3): 

(𝐻1)  This system has a smooth curve of equilibria 𝑓(𝑥∗(µ); µ) = 0. 

(𝐻2) The characteristic equation |𝜆𝐼 − 𝐷𝑓(𝑥∗(µ𝑜); µ𝑜)| = 0 has a pair of pure imaginary 

roots 𝜆(µ𝑜), 𝜆(µ𝑜)̅̅ ̅̅ ̅̅ ̅ and no other root with zero real parts, where 𝐷𝑓(𝑥∗(µ𝑜); µ𝑜) is the 

Jacobian matrix of this system at (𝑥∗(µ𝑜); µ𝑜) with the parameter value µ𝑜 . 

(𝐻3): 𝑅𝑒 [
𝑑𝜆(µ)

𝑑µ
]
µ=µ𝑜

≠ 0, where Reλ(µ) is the real part of 𝜆(µ). 

Then, there exists a continuous function µ(𝛾) with µ(0) = µ𝑜, and for all sufficiently 

small values of  𝛾 ≠ 0, there exists a continuous family of non-constant periodic solution 

𝑥(𝑡, 𝛾) for the above dynamical system, which collapses to the equilibrium point 𝑥∗(𝑡𝑜) 

as 𝛾 → 0. The period of the cycle is close to 2𝜋 𝐼𝑚⁄ µ𝑜, where 𝐼𝑚 µ𝑜 is the imaginary part 

of 𝜆(µ𝑜). This leads to the following theorem provides us very useful criterion for a 

complete mathematical characterization of the Hopf bifurcation in the four-dimensional 

system. 

 To use the Hopf bifurcation we need to choose a convenient parameter that makes 

the system satisfy conditions (H1) – (H3). Note that a suitable choice is the parameter 𝑔𝑍 

insofar as ℎ∗, 𝑢∗ and, 𝜔∗ depend on it. Besides, we know that the 𝜆₃(𝑔𝑍) and  𝜆4(𝑔𝑍) are 

a pair of pure imaginary eigenvalues which depend on 𝑔𝑍, and the system has no other 

root with zero real parts since 𝜆1(𝑔𝑍) and  𝜆2(𝑔𝑍) are complex conjugate with a negative 

real part. Hence, what remains to be shown to prove that the system enters a Hopf 

bifurcation is the transversality condition (H3). 

 But theorem 3 of  Asada and Yashida (2003, p.527) shows that we can replace the 

transversality condition (𝐻3), namely [
𝑑𝜙(𝑔𝑍)

𝑑𝑔𝑍
]
𝑔𝑍=𝑔𝑍

∗
≠ 0, by the following set of 



conditions: 𝑆1(𝑔𝑍)𝑆3(𝑔𝑍) > 0, 𝑆4(𝑔𝑍) ≠ 0 and 𝜙(𝑔𝑍) =  𝑆1(𝑔𝑍)𝑆2(𝑔𝑍)𝑆3(𝑔𝑍) −

𝑆3
2(𝑔𝑍) − 𝑆1

2𝑆4(𝑔𝑍) = 0. Hence we can prove the following proposition: 

Proposition. If the polynomial equation has a pair of purely imaginary roots with 

negative real parts and real parts of the other two roots (𝜆1,2) are negative then the 

transversality condition holds.  

Proof. We know from the lemma that 𝑆1(𝑔𝑍) > 0 and 𝑆3(𝑔𝑍) > 0, which allows us to 

conclude that 𝑆1(𝑔𝑍)𝑆3(𝑔𝑍) > 0. Besides 𝑆4 > 0, which also ensures that 𝑆4(𝑔𝑍) ≠ 0. 

Proposition 2 shows us that 𝜙(𝑔𝑍) = 0. Hence, from theorem 3 of  Asada and Yashida 

(2003, p.527) we conclude that [
𝑑𝜙(𝑔𝑍)

𝑑𝑔𝑍
]
𝑔𝑍=𝑔𝑍

∗
≠ 0.                                 c.q.d. 

  We now present numerical simulations to verify the situation of a Hopf bifurcation 

for the system. Here, we consider 𝛾 = 0.03326115367, 𝜇𝑛 = 0.8, 𝜎 = 10, 𝜙 =

0.1, 𝛼1 = 0.25, 𝛼2 = 0.75, 𝜆1 = 0.5, 𝜆2 = 0.9, 𝜔𝐾 = 0.35, 𝛳0 = 0.5, 𝛳1 = 1.0, 𝜐 = 3.0, 

𝛽0 = 0.5, 𝛽1 = 1.0  and 𝛿 = 0.05. The bifurcation parameter:  

𝑔𝑍 ϵ [𝑔𝑍
1, 𝑔𝑍

2] =[0.030000008865, 0.030000008865000000001],  

We shall prove that 𝜙(𝑔𝑍
1) < 0 and 𝜙(𝑔𝑍

2) > 0. Therefore, if we increase the 

values of 𝑔𝑍 in this interval, by the Intermediate Value Theorem, applied to function 

𝜙(𝑔𝑍), there is at least one 𝑔𝑍
∗𝜖[  ϵ [𝑔𝑍

1, 𝑔𝑍
2] such that 𝜙(𝑔𝑍

∗) = 0, that is, the  characteristic 

equation |𝜆𝐼 − 𝐷𝑓(𝑥∗(𝑔𝑍); 𝑔𝑍)| = 0 has a pair of pure imaginary roots 𝜆(𝑔𝑍), 𝜆(𝑔𝑍)̅̅ ̅̅ ̅̅ ̅̅  and 

no other root with zero real parts, where  𝐷𝑓(𝑥∗(𝑔𝑍); 𝑔𝑍) is the Jacobian matrix of this 

system at (𝑥∗(𝑔𝑍); ) with the parameter value  𝑔𝑍 = 𝑔𝑍
∗  . So it is clear that the system 

enters into a Hopf bifurcation when 𝑔𝑍 increases and reaches a bifurcation point. Hence, 

ℎ(𝑡), 𝜇(𝑡), 𝑢(𝑡) and 𝜔(𝑡) show oscillations when 𝑔𝑍 = 𝑔𝑍
∗  . 

When 𝑔𝑍
1 = 0.0300000088, the system has a  positive equilibrium 𝑃1

∗ =

(0.3000000330, 0.8, 0.02999999120, 0.3928571460) which is a stable equilibrium, 

with eigenvalues 𝜆1,2 = −7.45774969557189 10−13 ± 0.0468016689802291 𝑖, and 

𝜆3,4 = −0.639142742949255 ± 0.189486112198758 𝑖 . Here the Jacobian is  

𝐽(𝑃1
∗) = [

0
−0.21333333334

0
0

0.009978347199
−0.00017323120
−0.09678996872

0

0
−0.1346938786
−0.8066836795
−0.1683673483

0
−0.3771428602
0.4572857221

−0.4714285752

], 



The coefficients of the characteristic polynomial are 𝑆1 = 1.278285486, 𝑆2 =

0.4465988289, 𝑆3 = 0.002799951696, and 𝑆4 = 0.0009734305505. Besides, 

𝜙(𝑔𝑍
1) = 𝑏1𝑏2𝑏3 − 𝑏4𝑏1

2 − 𝑏3
2 = 5.00 10−13 > 0. 

When 𝑔𝑍
2 = 0.030000008865000000001, the system has a  positive 

equilibrium 𝑃1
∗ = (0.3000000333, 0.8, 0.02999999113, 0.3928571460), which is an 

unstable spiral, with eigenvalues: 𝜆1,2 = 4.56878979093744 10−12 ±

0.0468016690042829 𝑖, and 𝜆3,4 = −0.639142742999569 ±

0.189486112119760 𝑖. The Jacobin is: 

𝐽(𝑃1
∗) = [

0
−0.21333333334

0
0

0.009978347209
−0.00017323119
−0.09678996882

0

0
−0.1346938786
−0.8066836796
−0.1683673483

0
−0.3771428602
0.4572857221

−0.4714285752

], 

The coefficients of the characteristic polynomial are 𝑆1 = 1.278285486, 𝑆2 =

0.4465988289, 𝑆3 = 0.002799951692 and 𝑆4 = 0.0009734305505. Besides, 𝜙(𝑔𝑍
2) =

𝑏1𝑏2𝑏3 − 𝑏4𝑏1
2 − 𝑏3

2 = −1.478 10−12. This means that a simple Hopf bifurcation occurs 

at 𝑔𝑍 = 𝑔𝑍
∗ , when 𝑔𝑍

∗ = 0.030000008865. The system has a  positive equilibrium, 

namely 𝑃1
∗ = (0.3000000332, 0.8, 0.02999999114, 0.3928571460), which is a stable 

equilibrium, with eigenvalues: 𝜆1,2 ≅     0 ± 0.0468016690043024 𝑖, and 

𝜆3,4 = −0.639142742999426 ± 0.189486112119269 𝑖 . 

Here the Jacobian is given by:  

𝐽(𝑃1
∗) = [

0
−0.21333333334

0
0

0.009978347209
−0.00017323120
−0.09678996882

0

0
−0.1346938786
−0.8066836796
−0.1683673483

0
−0.3771428602
0.4572857221

−0.4714285752

]  

And the coefficients of the characteristic polynomial are positive: 𝑆1 =

1.278285486, 𝑆2 = 0.4465988289, 𝑆3 = 0.002799951698, 𝑆4 =

0.0009734305516. Besides: 𝜙(𝑔𝑍
∗) = 𝑆1𝑆2𝑆3 − 𝑆4𝑆1

2 − 𝑆3
2 = −5.11 10−13 ≅ 0 



  

Figure 1. Time series of  ℎ, 𝜇, 𝑢 and ω versus 𝑡 for twenty-five  initial conditions 

(ℎ(0), 𝜇(0), 𝑢(0), 𝜔(0))  (𝑠𝑒𝑒 𝐴𝑝𝑝𝑒𝑛𝑑𝑖𝑥 𝐴).,  where 𝑡 = 500. . .1500. The steady state 

𝑃∗ = (0.3, 0.8, 0.03, 0.3928571429 is locally asymptotically stable. 

 

 



 

 

5. Concluding Remarks 

This study established conditions for the existence of limit cycles of growth, 

unemployment, and wage share within the SSM with endogenous income distribution. 

We revisited the mathematical structure of the model proposed by Morlin and Pariboni 

(2024) to refine its stability analysis. By applying a robust stability criterion, we showed 

that under certain conditions, the model admits limit cycles, leading to sustained 

oscillations. Our findings demonstrate that persistent endogenous cycles are not only 

consistent with the SSM but can be derived directly from its theoretical framework. This 

insight significantly enhances our understanding of macroeconomic fluctuations within 

the SSM paradigm, providing a robust theoretical foundation for cyclical patterns that 

align with a demand-led growth perspective. By integrating endogenous distribution 

dynamics, this research offers a more comprehensive analytical framework for studying 

economic cycles in autonomous demand-led growth models. This result also enhances 

the theoretical foundations of the SSM with endogenous distribution, offering a new 

perspective on how conflict inflation and autonomous demand can interact to produce 

cyclical economic dynamics. 



References 

Araujo, R., & Moreira, H. (2023). Endogenous Cycles in the Sraffian Supermultiplier 

Model. Available at SSRN 4335253. 

Araujo, R. A., de Freitas, F. P., & Moreira, H. N. (2023) Endogenous Cycles in the 

Sraffian Supermultiplier Model with a Non-linear Investment Reaction Function. 

Asada, T., & Yoshida, H. (2003). Coefficient criterion for four-dimensional Hopf 

bifurcations: a complete mathematical characterization and applications to economic 

dynamics. Chaos, Solitons & Fractals, 18(3), 525-536. 

Bosi, S. (2019). Desmarchelier, D. Local bifurcation of three and four dimensional 

systems: A  tractable characterization with economic applications. Mathematical Social 

Sciences 97 38-50. 

Brochier, L. (2020), ‘Conflicting-claims and labour market concerns in a supermultiplier 

SFC model’, Metroeconomica, 71(3), 566–603 

Fazzari, S. M., P. Ferri and A. M. Variato (2020), ‘Demand-led growth and 

accommodating supply’, Cambridge Journal of Economics, 44(3), 583–605. 

Freitas, F., & Serrano, F. (2015). Growth rate and level effects, the stability of the 

adjustment of capacity to demand and the Sraffian supermultiplier. Review of Political 

Economy, 27(3), 258-281. 

Goodwin, R. M. (1950). A non-linear theory of the cycle. The Review of Economics and 

Statistics, 32(4), 316-320. 

Goodwin, R. M. (1951). The nonlinear accelerator and the persistence of business cycles. 

Econometrica: Journal of the Econometric Society, 1-17. 

Haluska, G., Braga, J., & Summa, R. (2021). Growth, investment share and the stability 

of the Sraffian Supermultiplier model in the US economy (1985–2017). Metroeconomica, 

72(2), 345-364. 

Kalecki, M. (1954). Theory of Economic Dynamics. New York: Routledge. 

Morlin, G. S.; Pariboni, R. (2024). Demand-led growth under political constraints: A 

long-run model of conflict inflation. Review of Keynesian Economics, 12(4), 475–498. 



Morlin, G. S., Passos, N., & Pariboni, R. (2024). Growth theory and the growth model 

perspective: insights from the supermultiplier. Review of Political Economy, 36(3), 1130-

1155. 

Nah, W. J. and M. Lavoie (2019), ‘The role of autonomous demand growth in a neo-

Kaleckian conflicting-claims framework’, Structural Change and Economic Dynamics, 

51, 427–444. 

Nikiforos, M., Santetti, M., & Von Arnim, R. (2023). The Sraffian supermultiplier and 

cycles: Theory and empirics. Review of Political Economy, 1-20. 

Rowthorn, R. (1977), ‘Conflict, inflation and money’, Cambridge Journal of Economics, 

1(3), 215–239. 

Serrano, F. (2019), ‘Mind the gaps: the conflict augmented Phillips curve and the Sraffian 

supermultiplier’, Working Paper, Institute of Economics, Federal University of Rio de 

Janeiro. 

Summa, R., Petrini, G., & Teixeira, L. (2023). Cycles: empirics and the supermultiplier 

theory. Review of Political Economy, 1-11. 

 

Appendix 

The Jacobian matrix due to the linearization of the system about the relevant equilibrium 

𝑃∗(ℎ∗, 𝜇∗, 𝑢∗, 𝜔∗)𝜖𝑅+
4  is given by: 

𝐽(𝑃∗) = 𝐷𝑓(𝑔𝑍) =

[
 
 
 
 𝑓1ℎ

𝑓2ℎ

𝑓3ℎ

𝑓4ℎ

𝑓1𝜇

𝑓2𝜇

𝑓3𝜇

𝑓4𝜇

𝑓1𝑢

𝑓2𝑢

𝑓3𝑢

𝑓4𝑢

𝑓1𝜔

𝑓2𝜔

𝑓3𝜔

𝑓4𝜔]
 
 
 
 

  

 where 𝑓𝑖𝑗 =
∂fi

∂xj
(𝑃∗),1≤ 𝑖, 𝑗 ≤ 4, 𝑥𝑗 = ℎ, 𝜇, 𝑢, 𝜔, that is: 

𝑓1ℎ(𝑔𝑍) = 0  

𝑓1𝜇(𝑔𝑍) = 𝛾𝑣𝑔𝑍
(1+𝛿)

𝜇𝑛
  

𝑓1𝑢(𝑔𝑍) = 0  

𝑓1𝜔(𝑔𝑍) = 0  



𝑓2ℎ(𝑔𝑍) = −
(𝜇𝑛)2

𝑣
 

𝑓2𝜇(𝑔𝑍) = (𝛾𝜎 −
1

𝑣
) 𝑣𝑔𝑍 

𝑓2𝑢(𝑔𝑍) = −
𝜎𝜙𝛷2𝜇𝑛[𝛽1𝛷1+𝛷2(𝑔𝑍−𝛽0)]

(1−𝛼1𝜆1)𝛽1𝛷3
  

𝑓2𝜔(𝑔𝑍) = −
𝜎𝜙𝜇𝑛[𝛽1𝛷1+𝛷2(𝑔𝑍−𝛽0)𝛩1]

(1−𝛼1𝜆1)𝛽1
  

𝑓3ℎ(𝑔𝑍) = 0  

𝑓3𝜇(𝑔𝑍) = −𝛾𝜎 (1 −
𝛽0−𝑔𝑍

𝛽1
)

𝑣(1+𝛿)

𝜇𝑛
𝑔𝑍  

𝑓3𝑢(𝑔𝑍) = {
𝜎𝜙𝛷2[𝛽1𝛷1+𝛷2(𝑔𝑍−𝛽0)𝛩1]

(1−𝛼1𝜆1)𝛽1 𝛷3
− 𝛽1} (1 −

𝛽0−𝑔𝑍

𝛽1
)  

 𝑓3𝜔(𝑔𝑍) =
𝜎𝜙[𝛽1𝛷1+𝛷2(𝑔𝑍−𝛽0)𝛩1]

(1−𝛼1𝜆1)𝛽1
(1 −

𝛽0−𝑔𝑍

𝛽1
)  

𝑓4ℎ(𝑔𝑍) = 0  

𝑓4𝜇(𝑔𝑍) = 0  

𝑓4𝑢(𝑔𝑍) = −
𝛷2[𝛽1𝛷1+𝛷2(𝑔𝑍−𝛽0)𝛩1]

(1−𝛼1𝜆1)𝛽1𝛷3
  

𝑓4𝜔(𝑔𝑍) = −
𝛽1𝛷1+𝛷2(𝑔𝑍−𝛽0)𝛩1

(1−𝛼1𝜆1)𝛽1
  

The coefficients of the characteristic polinomial evaluated in the relevant equilibrium 

point 𝑃∗, and are given by:  

𝑆1(𝑔𝑍) = −(𝛾𝜎 −
1

𝑣
) 𝑣𝑔𝑍 − {

𝜎𝜙𝛷2[𝛽1𝛷1+𝛷2(𝑔𝑍−𝛽0)𝛩1]

(1−𝛼1𝜆1)𝛽1 𝛷3
− 𝛽1} (1 −

𝛽0−𝑔𝑍

𝛽1
) +

𝛽1𝛷1+𝛷2(𝑔𝑍−𝛽0)𝛩1

(1−𝛼1𝜆1)𝛽1
                                                                                                                         

𝑆2(𝑔𝑍) = −𝛾𝑔𝑍𝜇𝑛 − (𝛾𝜎 −
1

𝑣
) 𝑣𝑔𝑍

𝛽1𝛷1+𝛷2(𝑔𝑍−𝛽0)𝛩1

(1−𝛼1𝜆1)𝛽1
+ (1 −

𝛽0−𝑔𝑍

𝛽1
) {(𝛾𝜎 −

1

𝑣
) 𝑣𝑔𝑍 [

𝜎𝜙𝛷2[𝛽1𝛷1+𝛷2(𝑔𝑍−𝛽0)𝛩1]

(1−𝛼1𝜆1)𝛽1 𝛷3
− 𝛽1] −

𝜎𝜙𝛷2[𝛽1𝛷1+𝛷2(𝑔𝑍−𝛽0)]𝛾𝜎𝑣(1+𝛿)𝑔𝑍

(1−𝛼1𝜆1)𝛽1𝛷3
−

[
𝜎𝜙𝛷2[𝛽1𝛷1+𝛷2(𝑔𝑍−𝛽0)𝛩1]

(1−𝛼1𝜆1)𝛽1 𝛷3
− 𝛽1]

𝛽1𝛷1+𝛷2(𝑔𝑍−𝛽0)𝛩1

(1−𝛼1𝜆1)𝛽1
−

𝜎2𝜙𝛷2𝑣(1+𝛿)𝛾𝑔𝑍[𝛽1𝛷1+𝛷2(𝑔𝑍−𝛽0)𝛩1]

(1−𝛼1𝜆1)𝛽1𝛷3
(1 −

𝛽0−𝑔𝑍

𝛽1
)}                                                



  

 

𝑆₃ =  
𝑔𝑍 𝛾𝜇𝑛

𝛷3𝛽1
3(𝛼1

2 𝜆1
2 − 2 𝛼1𝜆1 + 1)

[−𝛷₁²𝛷₂𝛽₀𝛽₁²𝜑𝜎 + 𝛷₁²𝛷₂𝛽₁²𝑔𝑍𝜑𝜎

+ 𝛷₁ 𝛷₂²𝛩₁ 𝛽₀²𝛽₁𝜑𝜎 + 𝛷₁𝛷₂²𝛩₁𝛽₀𝛽₁²𝜑𝜎 − 𝛷₁𝛷₂²𝛩₁𝛽₁²𝑔𝑍𝜑𝜎

+ 𝛷₁𝛷₂²𝛩₁𝛽₁𝑔𝑍²𝜑𝜎  +  𝛷₁𝛷₂²𝛽₀²𝛽₁𝜑𝜎 − 𝛷₁𝛷₂²𝛽₀𝛽₁²𝜑𝜎

+ 𝛷₁𝛷₂²𝛽₁²𝑔𝑍𝜑𝜎 + 𝛷₁𝛷₂² 𝛽₁ 𝑔𝑍²𝜑𝜎 −  𝛷₁𝛷₃𝛼₁𝛽₁⁴𝜆₁ +  𝛷₁𝛷₃𝛽₁³𝑔𝑍  

− 𝛷₂³𝛩₁²𝛽₀²𝛽₁ 𝜑 𝜎 + 2𝛷₂³𝛩₁²𝛽₀ 𝛽₁𝑔𝑍𝜑𝜎 − 𝛷₂³𝛩₁²𝛽₁𝑔𝑍²𝜑𝜎

+  3𝛷₂³𝛩₁𝛽₀²𝑔𝑍𝜑𝜎 −  3𝛷₂³𝛩₁𝛽₀𝑔𝑍²𝜑𝜎 + 𝛷₂³𝛩₁𝑔𝑍³𝜑𝜎  ] 

 

𝑆4 = −
𝑔𝑍𝛾𝜇𝑛

 𝛷3𝛽1
3(𝛼1

2 𝜆1
2 − 2 𝛼1𝜆1 + 1)

[−𝛷1
2𝛷2𝛽0𝛽1

2𝜑𝜎 + 𝛷1
2𝛷2𝛽1

2𝑔𝑍𝜑𝜎

+ 2𝛷1𝛷2
2𝛩1𝛽0

2𝛽1𝜑𝜎 − 4𝛷1𝛷2
2𝛩1𝛽0𝛽1𝑔𝑍𝜑𝜎 + 2𝛷1𝛷2

2𝛩1𝛽1𝑔𝑍
2𝜑𝜎

+ 𝛷1𝛷3𝛼1𝛽0𝛽1
3𝜆1 − 𝛷1𝛷3𝛼1𝛽1

4𝜆1 − 𝛷1𝛷3𝛼1𝛽1
3𝑔𝑍𝜆1 − 𝛷1𝛷3𝛽0𝛽1

3

+ 𝛷1𝛷3𝛽1
4 + 𝛷1𝛷3𝛽1

3𝑔𝑍 − 𝛷2
3𝛩1

2𝛽0
3𝜑𝜎 + 3𝛷2

3𝛩1
2𝛽0

2𝑔𝑍𝜑𝜎

− 3𝛷2
3𝛩1

2𝛽0𝑔𝑍
2𝜑𝜎 + 𝛷2

3𝛷1
2𝑔𝑍

3𝜑𝜎 − 𝛷2𝛷3𝛩1𝛼1𝛽0
2𝛽1

2𝜆1

+ 𝛷2𝛷3𝛩1𝛼1𝛽0𝛽1
3𝜆1 + 2𝛷2𝛷3𝛩1𝛼1𝛽0𝛽1

2𝑔𝑍𝜆1 − 𝛷2𝛷3𝛩1𝛼1𝛽1
3𝑔𝑍𝜆1

− 𝛷2𝛷3𝛩1𝛼1𝛽1
2𝑔𝑍

2𝜆1 + 𝛷2𝛷3𝛩1𝛽0
2𝛽1

2 − 𝛷2𝛷3𝛩1𝛽0𝛽1
3

− 2𝛷2𝛷3𝛩1𝛽0𝛽1
2𝑔𝑍 + 𝛷2𝛷3𝛩1𝛽1

3𝑔𝑍 + 𝛷2𝛷3𝛩1𝛽1
2𝑔𝑍

2]  

 

 


